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Abstract—

It is widely recognized that one of the main advantages
of Support Vector Machines over other training techniques,
apart from their good generalization capabilities, is their
ability to automatically obtain the machine architecture
given a training data set. Unfortunately, this is achieved
after solving a large optimization problem and, in many
cases, the resulting machines can be exceedingly large (a lot
of Support Vectors are obtained). In this paper we propose
a method for incrementally growing Support Vector Clas-
sifiers (SVCs), the Growing SVC (GSVC) algorithm, such
that, after starting with very simple machines, the classifier
is gradually improved by concentrating on critical regions
(hard to learn) of the input space, thereby asymptotically
approaching the SVC solution. Every time the architecture
is increased, only parameter update is needed, and not re-
training.

The performance of the proposed training scheme will be
illustrated using well known practical problems. Finally,
some future lines of research are briefly mentioned.

I. INTRODUCTION

Support Vector Classifiers (SVCs) are able to find maxi-
mal margin boundaries between classes [24], and yield min-
imal structural risk solutions (good generalization capa-
bilities). The training process is computationally costly
(Quadratic Programming (QP) optimization), even when
solved using highly efficient procedures [10][18]). Further-
more, SVCs are claimed to automatically obtain the ma-
chine architecture given a training data set, such that the
classifier is expressed in terms of some of the input patterns
(the so-called Support Vectors (SVs)), every one of them
becoming the prototype of a kernel function. When the
problem to solve involves many patterns with classes highly
overlapped (situation very common in real world prob-
lems), the number of SVs found by this procedure is often
exceedingly large (sometimes 1/4 or even 1/3 of the total
amount of data), leading to very large machines (requiring
hundreds or thousands of kernel computations to process
every new pattern). Several procedures exist, though, to
reduce the final complexity of the machine ([4][14][23]), but
they are also complex, and they need the SVC solution as
a starting point. In a previous work we have shown that
this approach does not lead to good solutions [13]. We
will adopt here a different strategy, instead of solving the
whole problem and reducing the machine afterwards, we
will grow the architecture until performance is no longer
improved. We expect large savings in computational cost
and machine complexity. Before presenting the growing
scheme for SVCs, let us briefly review the main concepts
of SVC learning.

Basically, nonlinear SVCs project training patterns
((xi,yi),i = 1,...,N) onto an infinite dimensional space
F, (x; = ¢(x;)), where the maximal margin hyperplane
is found f(x) = wl¢(x), yielding a decision machine
y = sign(f(x)). Unfortunately, in many interesting cases
¢() is unknown or the dimension of F' is infinite, such that
w can not be directly obtained. The usual approach is
to solve the problem using its dual formulation in terms
of inner products or kernels K(x;,x;) = ¢ (x:)o(x;),
which leads to the complex QP minimization mentioned
above. Nevertheless, there is an approximate (but effec-
tive) way for obtaining w using the primal formulation.
Taking into account that N vectors always span a subspace
of dimension (at most) N, we can express w as a linear
combination of the projected data, the weights being! a;y;

N

(w = a;y;¢(x;)). Collecting all nonzero terms, we ob-
i=1

tain the familiar expression for the classifier in terms of SVs

N
f(x;) =wle(x;) = z:laiyiK(Xi,Xj)- Furthermore, these
=

N vectors usually lie in a (lower) R-dimensional space?,
and we can finally adopt an even more simplified expres-
sion using only R weights to specify the hyperplane:

f(x) ~ Wh(®Ro(x)) = ZwR,iK(ci; X) (1)

where ®p = [¢p(c1), P(c2), ..., d(cr)] is the corresponding
base, every representational axis ¢(c;) can be associated
to patterns c¢; in input space (centroids in the Radial Ba-
sis Functions (RBF) case). In [13] we proposed several
methods (such as nonlinear Principal Component Analysis
(PCA), or clustering techniques) to select these c; values,
and we have shown that efficient Weighted Least Squares
(WLS) methods can be applied to solve the SVC problem
under this formulation, by iteratively computing weighting
values a; and solving WLS problems? involving matrices of
size R x R. Alternative (non-parametric) implementations
of this iterated WLS procedure can be found in [15][16].
This WLS-SVC algorithm has proved to be computation-
ally very efficient (1-2 orders of magnitude speed-up with

! Many of these values are zero (non Support values), which reduces
the size of the machine.

2The approximate dimension R of projected data can be obtained
using nonlinear PCA as in [22], but we show in [13] that results are
not very sensitive to this number, i.e., slightly larger values can be
used without appreciable degradation.

3For further details, please, refer to [13]



respect to highly optimized techniques such as chunk-SVC
[10] or Sequential Minimal Optimization (SMO) [18]), and
leads to lower complexity machines (also 1-2 orders of mag-
nitude), for a similar performance in terms of Classification
Error (CE) [13]. As in QP-SVC, we only need to handle
kernel computations during training. We will denote this
training process as (w,a) = WLSSVC(KRg,y;), where Kg
({Kr}jr = K(xj,cx)) is the kernel matrix for the entire
dataset. Applying this WLS-SVC algorithm we obtain the
value for w as well as weighting values a;, which vanish
for non-SV patterns. In what follows, we propose to build
an asymptotical approximation to the SVC solution start-
ing with very simple machines and selecting new elements
¢(c;) in conflictive regions of the space, i.e., where data
is not being correctly classified and it is being poorly rep-
resented with the current representational base in F', as
explained in the next Section.

II. GROWING SUPPORT VECTOR CLASSIFIERS

Using the formulation in the previous section, it is
straightforward to set up a growing procedure for SVCs.
We start with a very reduced machine, which will provide
us with the basic guidelines to continue expanding the ar-
chitecture. As also shown in [13], sensitivity with respect to
representational axis selection (centroids in input space) is
very low, and we propose to use the least effort in this task:
choose c¢; by picking up at random M/2 patterns of every
class. We can compute the initial kernel matrix Ko and
obtain the initial hyperplane w(0) and weighting values
a(0) via WLS-SVC. With so few axes in F', the represen-
tation of the dataset and the performance of the classifier
are very poor. Nevertheless, this preliminary information
can be used to select new axes to increase the representa-
tional capabilites of the architecture, to join them to the
existing ones and update the SVC solution. The architec-
ture growing is continued until a convergence criterion is
reached. A schematic representation of the growing archi-
tecture is provided in Figure 1 below, and the procedure
can be summarized in the steps displayed in Table II.

Note that, every time the classifier is expanded with new
units, the GSVC algorithm only updates the parameters for
step “n” using those at step “n-1”, such that does not need
re-training from scratch. This is an important characteris-
tic of the algorithm, which is feasible due to the iterative
nature of WLS-SVC training, and that would we impossi-
ble to implement under a QP formulation. Furthermore,
all the kernels computed at step “n” do not need to be re-
computed at following steps. Finally, and most important,
although we are using a (boosting-like) suboptimal pro-
cedure for growing the architecture, weights are globally
optimized, in the sense that structural risk minimization
is preserved, gradually approaching the QP-SVC solution.
The proposed criterion for selecting new centroids will be
discussed in the following section.

III. REPRESENTATIONAL AXIS SELECTION CRITERIA

It has been shown that good procedures exist to find be-
fore training a near-optimal subset of representational axis
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Fig. 1. Architecture growing via boosting.

¢, in F for a given dataset, by means of nonlinear PCA [23],
such that they define an orthonormal basis. Unfortunately,
proceeding this way is difficult. Firstly, we need to find the
Singular Value Decomposition (SVD) of a matrix of size
N x N, to obtain the new axes ¢;, which is a very costly
process even for moderate values of N. Secondly, we need
to find elements c; in the input space such that ¢(c;) ~ ¢,
to obtain a final machine of the form (1). Although this
procedure has already been formulated as an Expectation
Maximization (EM) algorithm [23], its correct application
is not a trivial task. When this problem is stated as a
clustering in input space ([23], [13]), it requires to set R ‘a
priori’, and solve a large clustering problem, and eventually
many of the centroids might be spent in modeling regions
with little interest.

We propose to find a good set of representational axes
with a procedure with the same principles of Boosting [7].
For a given architecture (step “n”), we force the training
procedure to concentrate on conflictive patterns, thereby
improving the representation of this region of the input
space. By conflictive we mean missclassified or “close to
the boundary”, and SVC provides us with an automatic
criterion to identify those patterns: the margin and sup-
port vector concepts. SVC training (even in its WLS-SVC
implementation) provides a list of those patterns critical
for training (SVs) (patterns with a; > 0, under WLS-SVC
scheme). Hopefully, by concentrating on these hard-to-
learn patterns, the overall performance of the machine can
be improved, since they represent a sufficient set of data for
solving the problem at hand. Nevertheless, we know that,
in problems with highly overlapped classes, a large number
of SVs can be found in the overlapping areas. Therefore,
an additional criterion has to be used to avoid selecting a
lot of patterns in the same region. We propose the follow-
ing combined criterion: among those patterns with a; > 0,



TABLE 1
SUMMARIZATION OF THE GSVC ALGORITHM.

0. Initialization
- build initial kernel matrix Ko and

Loop n=1,2,...

(w(n),a(n)) = WLSSVC(K(n),y;)

- Select M patterns at random (M/2 in every class),
- obtain the initial hyperplane (w(0),a(0)) = WLSSVC (Ko, y;)

1. Find a new set of centroids to expand the architecture, compute K,, and build K(n) = [Kq, ...
2. Train the new architecture, by updating weights using WLS-SVC

3. Evaluate the train and validation sets, and decide to continue growing or not.

, K]

choose randomly between the ones with smaller maximal
projection onto the actual base. This quantity can be eas-
ily estimated using the kernel matrix, by simply finding the
maximum of the kernel values associated to every pattern,
since every kernel itself represents the projection onto one
axis.

Every time the architecture is incremented, weight pa-
rameter wy is updated using the global SVC criterion by
means of WLS-SVC, such that, although a suboptimally
growing procedure is proposed for the architecture, the
global performance of the classifier is controlled by a well
theoretically founded criterion for structural risk minimiza-
tion, that provided by SVM theory.

IV. EXPERIMENTS

We will present in this Section several experiments to
illustrate the capabilities of the proposed GSVC algorithm.
We will show firstly its convergence behaviour, by depicting
the decision boundaries found at several stages of training.
Then we compare the performance of GSVC using several
well known problems with those obtained with QP-SVC,
Gaussian Art Map (GAM) [25], and C4.5 [20] algorithms.
For those separable problems (CE = 0 on the test set), we
depict the decission boundaries found by every method.

A. Convergence behaviour and complezity reduction

We solve here a simple 2D classification problem with
synthetic data generated with a mixture of Gaussian and
uniform distributions placed at random. The objective is
not to compare performance, but to illustrate the operation
of the GSVC algorithm. In Figure 2 we have represented
the incremental approach to the SVC solution provided by
the GSVC algorithm (boundaries found at steps 1, 2 and
10 in (a), (b) and (c), respectively). Training patterns have
been represented using “+” and “o” for every class, and the
decision boundary (continuous line) and margins (dashed
line) are shown.

Classification error (in percentage) in train, validation
and test sets have been represented in Figure 2(d), it can
be observed how, in spite of the continuous growth in com-
plexity of the classifier (4 new units are added in every
step), the underlying structural risk minimization principle

guarantees that overfitting does not occur. In this sense,
any stopping criteria that detects the paralization in con-
vergence observed after step 8 is valid to stop the training
process.

B. Comparison with other classifiers

We will compare in this Section the performance, train-
ing cost and final machine size of GSVC algorithm with
those of QP-SVC*, GAM and C4.5. We have selected sev-
eral well known binary classification problems, and simu-
lation results have been collected in Table II. Parameters
have been selected to give the best results on the validation
set, and are also detailed in the same table. The problem
set includes the following tasks:

o Classify the patterns lying inside a circle centered on a
unit square (Circle in Table II).

o Classify the patterns belonging to two different nested
spirals (Spiral in Table II).

o Classify the patterns belonging to two different over-
lapped Gaussian distributions (Two Gauss in Table II).

o Classify the Adult dataset of UCI repository [2] (Adult
in Table II).

o Classify the odd and even numbers in the Optical Recog-
nition of Handwritten Digits dataset of UCI repository
(Hand-dig in Table II).

The criteria used in the comparison are the Clasifica-
tion Error (Test CE in Table IT), the Machine Complexity
(Mach. size) measured as the number of RBFs in GSVC,
SVMlight and GAM and the number of nodes of the deci-
sion tree generated by C4.5; and the Cost of the Training
Algorithm (Train cost), measured in CPU seconds.

In order to qualitatively evaluate the boundary found in
those 2D cases with very similar CE (zero in some cases),
we have depicted in Figure 3 the boundaries found with
GSVC, QP-SVC, GAM and C4.5 for the circle, spiral and
Gaussian cases.

The results of the comparison between GSVC and SVM-
light show a spectacular reduction in the complexity of the
machine achieved by GSVC. The reduction rate reaches

4For the software implementation of the original SVC, SVMlight
algorithm has been used
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Decision boundaries (continuous line) and margin (dashed line) at steps 1,3 and 10 of the GSVC algorithm, in (a), (b) and (c),

respectively. Convergence error for train (continuous line), validation (dotted) and test (dashed) is shown in (d).

even 98% of the SVMlight final size. Moreover, classifica-
tion error is not affected by this reduction in the size of the
machine, since both algorithms present similar accuracies
in 4 of the 5 tasks.

With respect to GAM, GSVC achieves better classifica-
tion accuracy with machines of the same number of nodes.
Although for the simpler tasks (circle and spiral) GAM
training cost measured in CPU seconds is smaller than
GSVC one, for the more difficult problems either both costs
are similar (adult) or GSVC training is faster (Gauss and
hand-dig).

Finally, GSVC has been found to reduce the complexity
of the machines with relation to those obtained by C4.5
in the most difficult tasks, while its classification error is
smaller in 4 of the 5 tasks.

V. CONCLUSIONS AND FUTURE WORK

We have presented an incremental procedure for SVC
training relying on Iterated Weighted Least Squares min-
imizations, the proposed GSVC algorithm presenting sev-
eral main benefits. Firstly, the good generalization capabil-
ities of SVC theory are preserved, since we are also carrying
out an structural risk minimization in every step. Secondly,



TABLE II
RESULTS OF THE COMPARISON OF THE FOUR CLASSIFIERS. FOR EACH ALGORITHM, CLASSIFICATION ERROR (TEST CE), MACHINE COMPLEXITY
(MACH. S1ZE) AND TRAINING COST (TRAIN COST) IN CPU SECONDS ARE DISPLAYED. DESIGN PARAMETERS FOR GSVC ARE 0, SIZE OF THE
RBF, AND M, NUMBER OF NEW CENTROIDS ADDED TO THE ARCHITECTURE IN EACH ITERATION; FOR SVMLIGHT ¢ IS ALSO THE SIZE OF THE
RBF; FOR GAM, < IS THE INITIAL SIZE OF EACH RBF AND p IS THE BASELINE VIGILANCE PARAMETER; FOR C4.5, I¢,,f IS THE INTERVAL OF

CONFIDENCE USED FOR PRUNING THE TREE.

Circle Spiral Two Gauss Adult Hand-dig
Test CE(%) 0 0 17.9 15.3 4.06
GSVC Mach. size 12 60 20 120 90
Train cost 9.24 15.30 6.93 2892 590.38
Parameters c=05 M=2 =025 M=4 c=2,M=2 c=5 M=6 c=20,M=28
Test CE(%) 0 0 17.3 15.35 2.00
SVM light | Mach. size 17 106 403 10358 273
Train cost 1.19 133 1426 2633 68.59
Parameters c=0.5 o =0.25 o=2 oc=5 oc=20
Test CE(%) 0 2.20 16.90 20.82 7.95
GAM Mach. size 6 20 35 131 46
Train cost 0.06 2.55 11.59 2582 1364
Parameters | y=0.5,p=10""% | y=1,p=10"" [ y=2,p=10"" | y=2,p=10"81 | y=1,p=10"2%8
Test CE(%) 0 43.3 18.4 14.5 7.06
C4.5 Mach. size 9 3 11 469 157
Train cost 0.06 0.02 0.07 25.83 4.94
Parameters Toonf = 5% Toonf = 5% Toonf = 5% Loons = 15% Ieonf = 25%

the resulting machine is usually much smaller than those
found by QP-SVC, dramatically simplifying the operation
of the classifier.

In the near future, an optimal pruning stage will be in-
troduced in the GSVC algorithm in order to simplify the
architecture of the machine even more. Since we have pro-
posed a growing procedure for growing SVCs based on some
very computationally simple criteria (random selection of
new centroids in a critical set), the structure obtained after
several growing steps may be redundant to some extent. It
is possible to carry out a nonlinear PCA analysis to prune
those superfluous nodes, analogously as proposed in [23].

Furthermore, we propose to combine the present growing
scheme with the adaptive implementation of SVCs intro-
duced in a previous work, and to evaluate the possibility
of combining kernels with different parameters in the same
classifier, controlling during the training process the selec-
tion of these parameters by cross-validation.
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